Course Name: Advanced Seminar on Conservation Medicine 2021

Relational Database

Kimihito Ito Research Center for Zoonosis Control.

Points

- What a relational database is
- Normal forms of relational database
 - Examples of poor database design
- SQL

Relational database

- Relational database (RDB) is a database that is made up of a collection of relations
 - Microsoft Excel is NOT an RDB
- A relation is a table with columns and rows
- When you design a database, you need to think about relations that underly your data

How important RDB is

- RDB is running at the backend of information systems everywhere
 - Transactions on ATM machines of banks
 - Booking system of hotel rooms and train, airline, concert, and movie tickets
 - E commerce of online stores such as Amazon
 - Social networking system such as Twitter and Face book
 - Database of scientific papers
- Most information systems need an RDB

An example of relations

A relation is a table with columns and rows.

Patients

Patient ID	First name	Last name	Phone	_
P0001	Jane	Doe	(555)555-1111	
P0002	John	Doe	(555)555-2222	
P0003	Jane	Smith	(555)555-3333	
P0004	John	Smith	(555)555-4444	J

columns

Properties of columns

- A name of column must be unique within table
 - No two columns have the same name
- A column must have values from the same type

Patients

Patient ID	First name	Last name	Phone
P0001	Jane	Doe	(555)555-1111
P0002	John	Doe	(555)555-2222
P0003	Jane	Smith	(555)555-3333
P0004	John	Smith	(555)555-4444

Properties of rows

- Only one value at the intersection of a column and row
 - A relation does not allow multivalued attributes such as a list
- There are no duplicate rows in a relation

Patients			
Patient ID	First name	Last name	Phone
P0001	Jane	Doe	(555)555-1111
P0002	John	Doe	(555)555-2222
P0003	Jane	Smith	(555)555-3333
P0004	John	Smith	(555)555-4444

A primary key

- A primary key is a column or combination of columns that uniquely identifies each row
- A primary key is <u>underlined</u>

₽

Patient ID	First name	Last name	Phone
P0001	Jane	Doe	(555)555-1111
P0002	John	Doe	(555)555-2222
P0003	Jane	Smith	(555)555-3333
P0004	John	Smith	(555)555-4444

A primary key

- A primary key is a column or combination of columns that uniquely identifies each row
- There are no duplicate rows in a relation.

Patients			
Patient ID	First name	Last name	Phone
P0001	Jane	Doe	(555)555-1111
P0002	John	Doe	(555)555-2222
P0003	Jane	Smith	(555)555-3333
P0004	John	Smith	(555)555-4444

A primary key

- A primary key is a column or combination of columns that uniquely identifies each row.
- There are no duplicate rows in a relation.

Requirements of primary keys

A primary key should be some value that is highly unlikely ever to be null.

A primary key should never change.

An ideal primary key!

Names may change. Phone numbers may be null.

Patient ID	First name	Last name	Phone
P0001	Jane	Doe	(555)555-1111
P0002	John	Doe	(555)555-2222
P0003	Jane	Smith	(555)555-3333
P0004	John	Smith	(555)555-4444

- Some tables have no single column in which the values never duplicate.
- Concatenated columns can be the primary key if each combination appear only once.

Order-lines			
Order ID	Drug ID	Quantity	
O0001	D0022	1	
O0001	D0089	2	
O0002	D0022	1	
O0002	D1001	1	

- Some tables have no single column in which the values never duplicate.
- Concatenated columns can be the primary key if each combination appear only once.

Cannot be a primary key due to duplicated values

\bullet		
Order ID	Drug ID	Quantity
O0001	D0022	1
O0001	D0089	2
O0002	D0022	1
O0002	D1001	1

- Some tables have no single column in which the values never duplicate.
- Concatenated columns can be the primary key if each combination appear only once.

rder-lines	\blacksquare	
Order ID	Drug ID	Quantity
O0001	D0022	1
O0001	D0089	2
O0002	D0022	1
00002	D1001	1

Cannot be a primary key due to duplicated values

- Some tables have no single column in which the values never duplicate.
- Concatenated columns can be the primary key if each combination appear only once.

Cannot be a primary key due to duplicated values

der-lines		➡
Order ID	Drug ID	Quantity
O0001	D0022	1
O0001	D0089	2
O0002	D0022	1
O0002	D1001	1

- Some tables have no single column in which the values never duplicate.
- Concatenated columns can be the primary key if each combination appear only once.

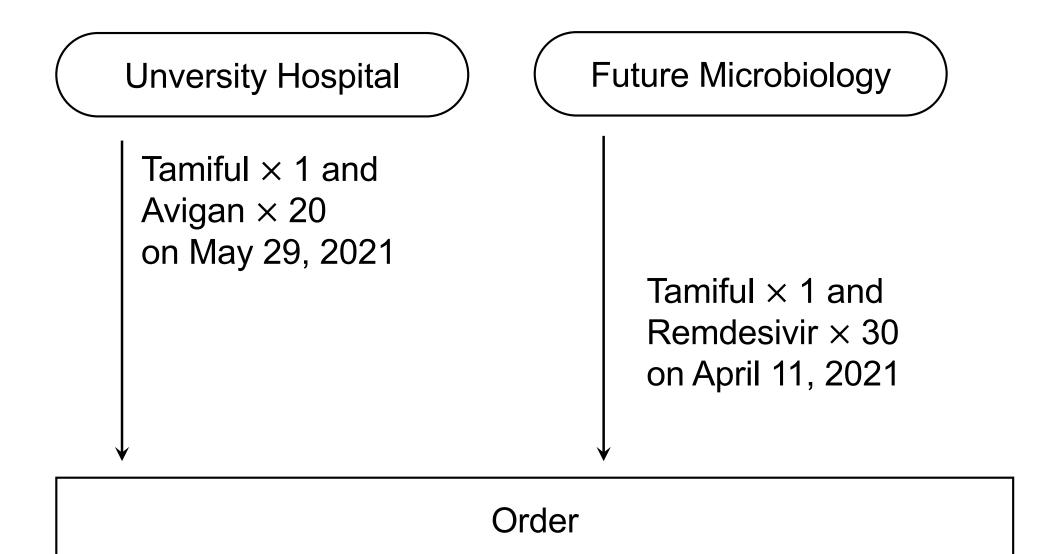
No duplicated combinatios. They can be a concatenated primary key

人

Order ID	<u>Drug ID</u>	Quantity		
O0001	D0022	1		
O0001	D0089	2		
O0002	D0022	1		
O0002	D1001	1		

Candidate key

 A column in concatenated columns is candidate key (or prime attribute) if the concatenated columns can be the primary key only with the column


Candidate key Candidate key (prime attribute) (prime attribute)

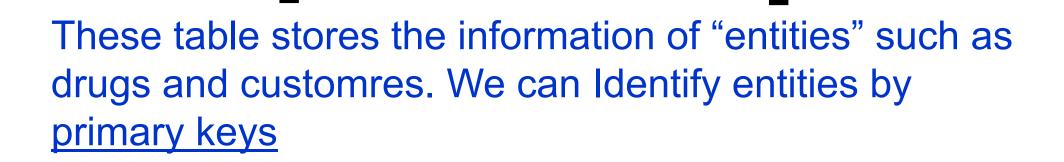
Order ID	Drug ID	Quantity
O0001	D0022	1
O0001	D0089	2
O0002	D0022	1
O0002	D1001	1

Non-prime attribute

A column is non-prime attribute if they it is not candidate key (or prime attribute)

Candidate key (prime attribute)	Candidate key (prime attribute)	Non-prime attribute	
Order ID	Drug ID	Quantity	
O0001	D0022	1	
O0001	D0089	2	
O0002	D0022	1	
O0002	D1001	1	

Drugs			Customers		
Drug ID	Name	Price	Custormer	Name	ZIP
D0022	Tamiflu	\$9.95	<u>ID</u>		
D0089	Avigan	\$15.95	C0186	University Hospital	060-0014
D1001	Remdesivir	\$15.95	C1123	Bioinformatics Inc	001-0020
		T-2120	C3001	Future Microbiology	060-0018

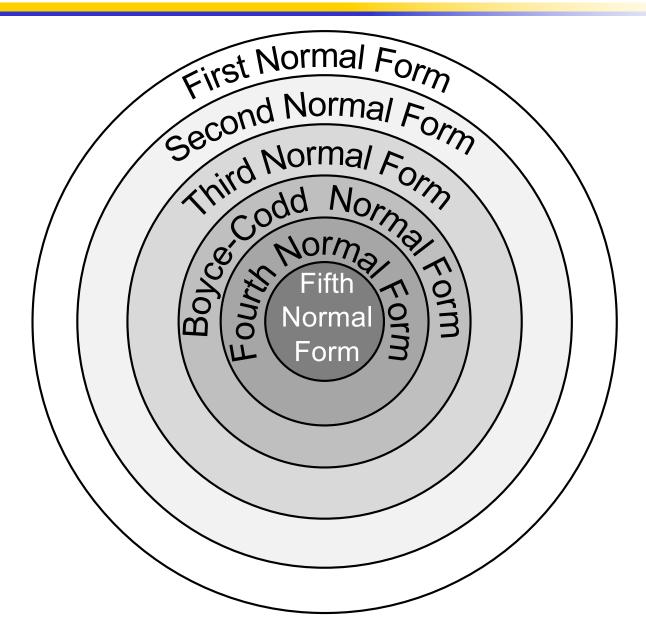

Orders

Order ID	Customer ID	Order date
O0001	C3001	2021-03-29
O0002	C0186	2021-04-11

Order-lines

Order ID	Drug ID	Quantity	Shipped?
O0001	D0022	1	Y
O0001	D0089	20	Y
O0002	D0022	1	Ν
O0002	D1001	30	Ν

Drugs			Customers		
Drug ID	Name	Price	Custormer	Name	ZIP
D0022	Tamiflu	\$9.95	<u>ID</u>		
D0089	Avigan	\$15.95	C0186	University Hospital	060-0014
D1001	Remdesivir	\$19.95	C1123	Bioinformatics Inc	001-0020
		φ τ 91959	C3001	Future Microbiology	060-0018


These table stores the relationship between "entities" using primary keys of tables of the entities

Ord	ers		
0	rder ID	Customer ID	Order date
	O0001	C3001	2021-03-29
	O0002	C0186	2021-04-11

Order-lines

Order ID	Drug ID	Quantity	Shipped?
O0001	D0022	1	Y
O0001	D0089	20	Y
O0002	D0022	1	Ν
O0002	D1001	30	Ν

Normal forms

First Normal form

The data are stored in a two dimensional table with no repeating groups such as a list

Repeating groups of vaccines

Patient ID	First	Last	Vaccines	Туре	Vaccination Dates
P0001	Jane	Doe	Pfizer	mRNA	2021-08-01
P0002	John	Doe	Modelna	mRNA	2021-07-24
P0003	Jane	Smith	Modelna	mRNA	2021-07-10, 2021-08-08
P0004	John	Smith	Sinovac, Pfizer	inactivated, mRNA	2021-04-01, 2021-07-05, 2021-07-26

First Normal form

The data are stored in a two dimensional table with no repeating groups such as a list

Repeating groups of vaccination dates

Patient ID	First	Last	Vaccines	Туре	Vaccination Dates
P0001	Jane	Doe	Pfizer	mRNA	2021-08-01
P0002	John	Doe	Modelna	mRNA	2021-07-24
P0003	Jane	Smith	Modelna	mRNA	2021-07-10, 2021-08-08
P0004	John	Smith	Sinovac, Pfizer	inactivated, mRNA	2021-04-01, 2021-07-05, 2021-07-26

Why repeating groups are bad

Searching table is very difficult.

- To know patients vaccinated before June 2021, individual dates need to be checked.
- There is no way to know which vaccine was used for each vaccination (0004).

Patient <u>ID</u>	First	Last	Vaccines	Туре	Vaccination Dates
P0001	Jane	Doe	Pfizer	mRNA	2021-08-01
P0002	John	Doe	Modelna	mRNA	2021-07-24
P0003	Jane	Smith	Modelna	mRNA	2021-07-10, 2021-08-08
P0004	John	Smith	Sinovac, Pfizer	inactivated, mRNA	2021-04-01, 2021-07-05, 2021-07-26

Removing the repeating group

Searching table get easier
Who is vaccinated before June 2021?
Used vaccines were clarified (0004)

Patient ID	First	Last	Vaccine	Туре	Date
P0001	Jane	Doe	Pfizer	mRNA	2021-08-01
P0002	John	Doe	Modelna	mRNA	2021-07-24
P0003	Jane	Smith	Modelna	mRNA	2021-07-10
P0003	Jane	Smith	Modelna	mRNA	2021-08-08
P0004	John	Smith	Sinovac	inactivated	2021-04-01
P0004	John	Smith	Pfizer	mRNA	2021-07-05
P0004	John	Smith	Pfizer	mRNA	2021-07-26

Problems with first normal form

We need to update multiple records when the name of a patient changed (0003)
No data is stored for unvaccinated patients

Patient ID	First	Last	Vaccine	Туре	Date
P0001	Jane	Doe	Pfizer	mRNA	2021-08-01
P0002	John	Doe	Modelna	mRNA	2021-07-24
P0003	Jane	Smith	Modelna	mRNA	2021-07-10
P0003	Jane	Smith	Modelna	mRNA	2021-08-08
P0004	John	Smith	Sinovac	inactivated	2021-04-01
P0004	John	Smith	Pfizer	mRNA	2021-07-05
P0004	John	Smith	Pfizer	mRNA	2021-07-26

Functional dependency

 Attribute B is functionally dependent on Attribute A if for each unique value of A only one value of B is associated

Name is functionally dependent on Patient ID

Patient ID	First	Last	Vaccine	Туре	<u>Date</u>
P0001	Jane	Doe	Pfizer	mRNA	2021-08-01
P0002	John	Doe	Modelna	mRNA	2021-07-24
P0003	Jane	Smith	Modelna	mRNA	2021-07-10
P0003	Jane	Smith	Modelna	mRNA	2021-08-08
P0004	John	Smith	Sinovac	inactivated	2021-04-01
P0004	John	Smith	Pfizer	mRNA	2021-07-05
P0004	John	Smith	Pfizer	mRNA	2021-07-26

Determinant

- Attribute B is functionally dependent on Attribute A if for each unique value of A only one value of B is associated
 - Attribute A is called determinant of Attribute B

Patient ID	First	Last	Vaccine	Туре	Date
P0001	Jane	Doe	Pfizer	mRNA	2021-08-01
P0002	John	Doe	Modelna	mRNA	2021-07-24
P0003	Jane	Smith	Modelna	mRNA	2021-07-10
P0003	Jane	Smith	Modelna	mRNA	2021-08-08
P0004	John	Smith	Sinovac	inactivated	2021-04-01
P0004	John	Smith	Pfizer	mRNA	2021-07-05
P0004	John	Smith	Pfizer	mRNA	2021-07-26

Second Normal form

- The relation is in first normal form
- No non-prime attribute functionally dependent on a part of a candidate key
 - Table below is NOT second normal form because First and Last are non-prime attribute and functionally dependent upon a candidate key, Patient ID

Patient ID	First	Last	Vaccine	Туре	Date
P0001	Jane	Doe	Pfizer	mRNA	2021-08-01
P0002	John	Doe	Modelna	mRNA	2021-07-24
P0003	Jane	Smith	Modelna	mRNA	2021-07-10
P0003	Jane	Smith	Modelna	mRNA	2021-08-08
P0004	John	Smith	Sinovac	inactivated	2021-04-01
P0004	John	Smith	Pfizer	mRNA	2021-07-05
P0004	John	Smith	Pfizer	mRNA	2021-07-26

Second Normal form

We don't have to update multiple records when the name of a patient changed
We can store data on unvaccinated patients

Patients			Vaccination			
Patient ID	First	Last	Patient ID	Vaccine	Туре	Date
P0001	Jane	Doe	P0001	Pfizer	mRNA	2021-08-01
P0002	John	Doe	P0002	Modelna	mRNA	2021-07-24
P0003	Jane	Smith	P0003	Modelna	mRNA	2021-07-10
P0004	John	Smith	P0003	Modelna	mRNA	2021-08-08
P0005	Paul	Smith	P0004	Sinovac	inactivated	2021-04-01
			P0004	Pfizer	mRNA	2021-07-05
			P0004	Pfizer	mRNA	2021-07-26

Third Normal form

- The relation is second normal form
- All columns are functionaly dependent on sololy on the primary key

	Patients	Vaccination		
	Patient ID	First	Last	Patient ID
_	P0001	Jane	Doe	P0001
	P0002	John	Doe	P0002
	P0003	Jane	Smith	P0003
	P0004	John	Smith	P0003
_				P0004

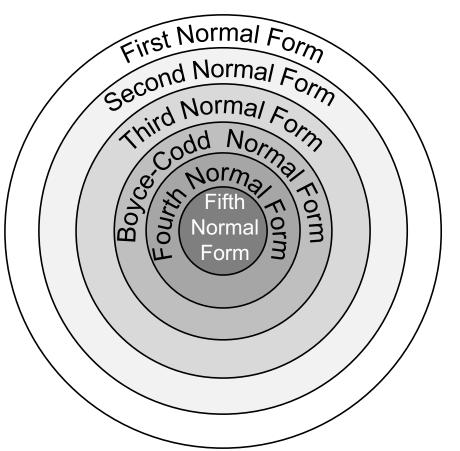
Third normal form

Not third normal form

Vaccination					
Patient ID	Vaccine	Туре	<u>Date</u>		
P0001	Pfizer	mRNA	2021-08-01		
P0002	Modelna	mRNA	2021-07-24		
P0003	Modelna	mRNA	2021-07-10		
P0003	Modelna	mRNA	2021-08-08		
P0004	Sinovac	inactivated	2021-04-01		
P0004	Pfizer	mRNA	2021-07-05		
P0004	Pfizer	mRNA	2021-07-26		

Third Normal form

Patients


Patient ID	First	Last
P0001	Jane	Doe
P0002	John	Doe
P0003	Jane	Smith
P0004	John	Smith

Vaccines					
Manufacturer	Туре				
Pfizer	mRNA				
Modelna	mRNA				
Sinovac	inactivated				
	Pfizer Modelna				

Vaccination

Patient ID	Vaccine ID	<u>Date</u>
P0001	V0001	2021-08-01
P0002	V0002	2021-07-24
P0003	V0002	2021-07-10
P0003	V0002	2021-08-08
P0004	V0003	2021-04-01
P0004	V0001	2021-07-05
P0004	V0001	2021-07-26

Normal forms

- For most relations, third normal form is a good design objective.
- Relations in third nomal form are free of most anomalies.
- Please refer textbooks for higher normal forms

SQL

- Structured English Query Language (SEQUEL; SQL) is a computer language that has been implemented in the most relational database management system (DBMS).
- SQL was developed by IBM in the early 1970s.
- SQL can be used to create and update tables, and to retrieve information from tables.

SQL

- SQL is used to manage RDB running at the backend of information system
- You don't need to write SQL codes
- Computers can generate SQL codes from your clicks on the Web browsers
 - When you reserve a hotel room at a web site, its server generates an SQL code and shows you the results on your browser
- Knowing SQL is helpful to design an information system using RDB

SQL SELECT FROM

 SELECT FROM statement retrieve data in columns from tables

SELECT columns
 FROM table

Example

Patients

Patient_ID	First	Last
P0001	Jane	Doe
P0002	John	Doe
P0003	Jane	Smith
P0004	John	Smith

VaccinesVaccine_IDManufacturerTypeV0001PfizermRNAV0002ModelnamRNAV0003Sinovacinactivated

Vaccination

Patient_ID	Vaccine_ID	<u>Date</u>
P0001	V0001	2021-08-01
P0002	V0002	2021-07-24
P0003	V0002	2021-07-10
P0003	V0002	2021-08-08
P0004	V0003	2021-04-01
P0004	V0001	2021-07-05
P0004	V0001	2021-07-26

SELECT Manufacturer FROM Vaccines;

Manufacturer

_ _ _ _ _ _ _ _ _

Pfizer Modelna Sinovac

Vaccines

Vaccine_ID	Manufacturer	Туре
V0001	Pfizer	mRNA
V0002	Modelna	mRNA
V0003	Sinovac	inactivated

SELECT Manufacturer, Type FROM Vaccines;

Manufacturer | Type

Pfizer | mRNA Modelna | mRNA Sinovac | inactivated

Vaccines

Vaccine_ID	Manufacturer	Туре
V0001	Pfizer	mRNA
V0002	Modelna	mRNA
V0003	Sinovac	inactivated

SQL WHERE

- WHERE clause retrieves rows conditioning with predicates
 - SELECT columns
 FROM table
 WHERE predicate
- You can use the following in predicates
 - relationship operators e.g., `=', `>', and `<'.</p>
 - Iogical operators e.g., AND, OR, and NOT
 - other special operators e.g., IN and LIKE

SELECT Manufacturer FROM Vaccines
WHERE Type=`mRNA';

Manufacturer

Pfizer Modelna

Vaccines

Vaccine_ID	Manufacturer	Туре
V0001	Pfizer	mRNA
V0002	Modelna	mRNA
V0003	Sinovac	inactivated

Example

SELECT Patient_ID FROM Vacctination
WHERE Date>'2021-07-31';

Patient_ID

P0001 P0003

Vaccination		
Patient_ID	Vaccine_ID	<u>Date</u>
P0001	V0001	2021-08-01
P0002	V0002	2021-07-24
P0003	V0002	2021-07-10
P0003	V0002	2021-08-08
P0004	V0003	2021-04-01
P0004	V0001	2021-07-05
P0004	V0001	2021-07-26

Retrieval from multiple tables

- List the tables to be combined after FROM to retrieve data from combined tables.
 - SELECT columns
 FROM table1, table2
 WHERE table1.column_a = table2.column_b

Example

SELECT First, Last FROM Patients, Vaccination
WHERE Vaccination.Date > '2021-07-31' AND
Vaccination.Patient_ID = Patient.Patient_ID;

				Vaccination		
Jane	Doe		-	Patient_ID	Vaccine_ID	Date
Jane	Smit	ch	-	D 0001		2021.00.01
				P0001	V0001	2021-08-01
Patients				P0002	V0002	2021-07-24
Patient_ID	First	Last		P0003	V0002	2021-07-10
P0001	Jane	Doe		P0003	V0002	2021-08-08
P0002	John	Doe		P0004	V0003	2021-04-01
P0003	Jane	Smith		P0004	V0001	2021-07-05
P0004	John	Smith	_	P0004	V0001	2021-07-26

Practice

Patients

Patient_ID	First	Last
P0001	Jane	Doe
P0002	John	Doe
P0003	Jane	Smith
P0004	John	Smith

Vaccination

Patient_ID	Vaccine_ID	Date
P0001	V0001	2021-08-01
P0002	V0002	2021-07-24
P0003	V0002	2021-07-10
P0003	V0002	2021-08-08
P0004	V0003	2021-04-01
P0004	V0001	2021-07-05
P0004	V0001	2021-07-26

Vaccines		
Vaccine_ID	Manufacturer	Туре
V0001	Pfizer	mRNA
V0002	Modelna	mRNA
V0003	Sinovac	inactivated

Write an SQL code that looks for patients who got a shot of inactivated vaccine

Example

SELECT First, Last
FROM Patients, Vaccination, Vaccines
WHERE Vaccines.Type=`inactivated' AND
Vaccination.Vaccine_ID=Vaccines.Vaccine_ID AND
Vaccination.Patient ID = Patient.Patient ID;

First | Last

John | Smith

SQL UPDATE

You can modify information in the database by UPDATE command in SQL

UPDATE Patients SET last='Yamada' WHERE Patient_ID='P0003'

Patients

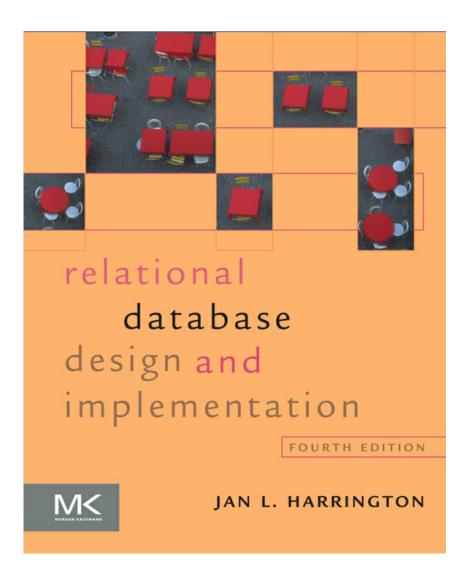
Patient ID	First	Last
P0001	Jane	Doe
P0002	John	Doe
P0003	Jane	Yamada
P0004	John	Smith

SQL UPDATE and INSERT

You can add information in the database by INSERT command in SQL

INSERT INTO Patients
VALUES (`P0005', `Paul', `Smith');

Patients		
Patient ID	First	Last
P0001	Jane	Doe
P0002	John	Doe
P0003	Jane	Smith
P0004	John	Smith
P0005	Paul	Smith


Points

What a relational database is

Normal Forms of Relational Database

- Examples of poor database design
- SQL

Textbook

Harrington, Jan L. *Relational Database Design and Implementation,* Morgan Kaufmann

Boyce–Codd normal form and Fourth normal form

Boyce–Codd Normal form

Decometions

The relation is in third normal formAll determinants are candidate keys

Not Boyce–Codd normal form

Reservations		
Date	<u>Room</u>	Price
2021-07-01	small	\$100
2021-07-07	large	\$200
2021-07-07	small	\$200
2021-07-24	small	\$100
2021-08-04	large	\$400
2021-08-30	large	\$400

Boyce–Codd Normal form

The relation is in third normal formAll determinants are candidate keys

Boyce–Codd normal form

Boyce–Codd normal form

Prices

Membership	Price
yes	\$100
no	\$200
yes	\$200
no	\$400
	yes no yes

Reservations		
Date	<u>Room</u>	Membership
2021-07-01	small	yes
2021-07-07	large	yes
2021-07-07	small	no
2021-07-24	small	yes
2021-08-04	large	no
2021-08-30	large	no

Fourth Normal form

The relation is in Boyce-Codd normal formThere are no multivalued dependencies

Not fourth normal form

Paper ID	Author	Reference
P0003	A0001	P0001
P0003	A0001	P0002
P0003	A0002	P0001
P0003	A0002	P0002

Fourth Normal form

The relation is in Boyce-Codd normal form
There are no multivalued dependencies

Fourth normal form

Authors

Paper ID	Author
P0003	A0001
P0003	A0002

Fourth normal form

References		
Paper ID	Reference	
P0003	P0001	
P0003	P0002	