Workshop on the Mathematical Modelling of Variant Replacement of Infectious Diseases Pathogens

Maximum Likelihood Estimation of Model Parameters

Kimihito Ito
International Institute for Zoonosis Control
Hokkaido University

Variant Replacement Model

The frequency of variant A_i at time t can be presented using R_{RI} of A_i w.r.t a as follows:

$$q_{A_i}(t) = \frac{k_i \sum_{j=1}^l g_{A_i}(j) \, q_{A_i}(t-j)}{\sum_{j=1}^l g_a(j) q_a(t-j) + \sum_i^n k_i \sum_{j=1}^l g_{A_i}(j) q_{A_i}(t-j)} \tag{6}$$

where $g_a(j)$, $g_{A_1}(j)$, ... $g_{A_n}(j)$ are the generation time distribution of a, A_1 , ..., A_n .

Note that the formula doesn't contain $R_a(t)$ or I(t)

Calculation of Trajectory

- Consider we have variants $a, A_1, ..., A_n$ Suppose we know
 - values of k_1, \dots, k_n , R_{RI} of A_1, \dots, A_n w.r.t a,
 - values of $c_1, ..., c_n$, GT_R of $A_1, ..., A_n$ w.r.t a,
 - values of $q_{A_1}(t_s), ..., q_{A_n}(t_s)$, the relative frequencies of $A_1, ..., A_n$ at time t_s
- Applying the Equation (6) recursively, we can calculate the relative frequencies $q_{A_1}(t), ..., q_{A_n}(t)$ for any $t > t_s$ (by assuming $q_{A_i}(t) = q_{A_i}(t_s)$ for any $t < t_s$).

Example

- We have the baseline a and subjects A_1 and A_2 .
- The generation time of all variants follows the gamma distribution with $\alpha = 4.03$ and $\theta = 0.735$.
- Let $k_1 = 1.4$ and $k_2 = 1.6$.
- Let $q_{A_1}(t_s) = 0.01$ and $q_{A_2}(t_s) = 0.005$ where t_0 is June 1.

Calculated frequencies of variants

Observations

 We use counts of observed variants as observation data to estimate parameters. (Note that observations are not the relative frequencies!)

date_from	date_till	number of <i>a</i>	number of <i>A</i> ₁		number of <i>A_n</i>
:	• •	•	•	•	:
t_h	u_h	$N_a(o_h)$	$N_{A_1}(o_h)$	•••	$N_{A_n}(o_h)$
:	:	:	:	:	:

Maximum likelihood estimation of Parameters

Find the parameters $k_1, ..., k_n, q_{A_1}(t_s), ..., q_{A_n}(t_s)$ that maximize the probabilities of observing actual counts.

 $\mathbf{c}_1, \dots, \mathbf{c}_n$, are also esitmated if needed

Likelihood Function (multinomial)

- The probability that $A_1, ..., A_n$ and a were observed $N_{A_1}(o_h), ..., N_{A_n}(o_h)$, and $N_a(o_h)$ times at period o_h follows the multinomial distribution of $q_{A_1}(o_h), ..., q_{A_n}(o_h)$.
- The likelihood function is given as follows.

$$L\left(c_{1}, \dots, c_{n}, k_{1}, \dots, k_{n}, q_{A_{1}}(t_{A_{1}}), \dots, q_{A_{n}}(t_{A_{n}})\right)$$

$$= \prod_{h=1}^{L} \left(\frac{N(o_{h})!}{N_{a}(o_{h})! N_{A_{1}}(o_{h})! \cdots N_{A_{n}}(o_{h})!} q_{a}(o_{h})^{N_{a}(o_{h})} q_{A_{1}}(o_{h})^{N_{A_{1}}(o_{h})} \cdots q_{A_{n}}(o_{h})^{N_{A_{n}}(o_{h})}\right)$$

Likelihood Function (Dirichlet Multinomial)

- The probability that $A_1, ..., A_n$ and a were observed $N_{A_1}(o_h), ..., N_{A_n}(o_h)$, and $N_a(o_h)$ times at period o_h follows the a Dirichlet multinomial distribution with parameters $q_a(o_h)D, q_{A_1}(o_h)D, ..., q_{A_n}(o_h)D$, where D is a non-negative integer.
- The likelihood function is given as follows.

$$\begin{split} &L\left(c_{1},\ldots,c_{n},k_{1},\ldots,k_{n},q_{A_{1}}\left(t_{A_{1}}\right),\ldots,q_{A_{n}}\left(t_{A_{n}}\right),D\right)\\ &=\prod_{h=1}^{L}\left(\frac{\Gamma(D)\Gamma(N(o_{h})+1)}{\Gamma(N(o_{h})+D)}\frac{\Gamma(N_{a}(o_{h})+q_{a}(o_{h})D)}{\Gamma(q_{a}(o_{h})D)\Gamma(N_{a}(o_{h})+1)}\prod_{i=1}^{n}\frac{\Gamma\left(\Gamma(N_{A_{i}}(o_{h})+q_{A_{i}}(o_{h})D)\right)}{\Gamma\left(Q_{A_{i}}(o_{h})D\right)\Gamma\left(N_{a}(o_{h})+1\right)}\right) \end{split}$$

Multinomial vs Dirichlet Multinomial

- The multinomial sample model assumes the sampled population is always the same.
- Dirichlet Multinomial allows additional errors in sampling. It can be useful when samples are drawn from sub-populations where the relative frequencies of variants are different.

The 95% Confidence Intervals of Parameters

The 95% confidence intervals (CIs) of parameters can be estimated using the profile likelihood method (Held & Sabanes Bove, 2020).

Prediction of Frequencies of Variants in the futre

• Substituting parameters in the model with the maximum likelihood estimations of parameters, we can calculate the maximum likelihood estimations of variant frequencies $q_{A_1}(t), ..., q_{A_n}(t)$, and at $t > t_s$.

The maximum likelihood esitmation

$$(k_1, k_2, q_{A_1}(t_s), q_{A_2}(t_s))$$

= (1.4, 1.6, 0.01, 0.005)

Estimation of Frequencies of Variants

For each variant, we calculate the minimum and maximum of the relative frequencies at t using combinations of parameters within the 95% confidence region. The minimum and maximum give the lower and upper bound of 95%CIs of relative frequencies at t.
prediction

Summary

 By maximizing the likelihood function, we can estimate the relative reproduction numbers among variants.