Workshop on the Mathematical Modelling of Variant Replacement of Infectious Diseases Pathogens

General Discussions

Kimihito Ito International Institute for Zoonosis Control Hokkaido University

Count Data

How can we obtain count data of variants?

- Metadata from sequence database, such as GISAID.
- Realtime PCR.
- Serological data
- Rapid test

Lineage Designation

- In GISAID, a pangolin lineage name is assigned to each SARS-CoV-2 sequence.
- What are the criteria to define a new lineage of viruses?

Automation of Prediction

- Can we automate the prediction of frequencies of variants in the future?
- What are the problems to be solved?
 - Needs finantial support to obtain realtime sequence data

Automation of Prediction

- Delay from collection to submit data
 - Transport: 14 days
 - Sequencing: 5 days
 - Median delay: 63 days
- Political issue
 - Local institute dose not want to send samples to centers imediately.

Automation of Prediction

- Collaborate with IT
- Ministry of Health
- We can try

Constant Assumption of R_{RI}

- We assume that R_{RI} is constant over time, and prediction is accurate.
- What is the situation where R_{RI} is not constant over time?

Heterogeneity in Immun Status

How can we take immunity into account?

- No one has immunity to emerging infectious diseases.
- Adults have more chance to acquire immunity to infectious diseases than children.

How to stop the replacement

Is it possible to stop the replacement of variants?

My Favorite Words

"All models are wrong", (but some are useful).

by George Edward Pelham Box

References (1)

- 1. Bennett CH, Li M, Ma B. (2003) Chain letters & evolutionary histories. Sci Am. Jun;288(6):76-81.
- 2. Piantham, C., & Ito, K. (2022). Predicting the Trajectory of Replacements of SARS-CoV-2 Variants Using Relative Reproduction Numbers. Viruses, 14(11).
- 3. Ito, K., Piantham, C., & Nishiura, H. (2021). Predicted dominance of variant Delta of SARS-CoV-2 before Tokyo Olympic Games, Japan, July 2021. Euro Surveillance, 26(27), 4–12.
- 4. Fraser, C. (2007). Estimating individual and household reproduction numbers in an emerging epidemic. PLoS ONE, 2(8).
- 5. Nishiura, H., Linton, N. M., & Akhmetzhanov, A. R. (2020). Serial interval of novel coronavirus (COVID-19) infections. International Journal of Infectious Diseases, 93, 284–286.

References (2)

- 6. Hart, W. S., Miller, E., Andrews, N. J., Waight, P., Maini, P. K., Funk, S., & Thompson, R. N. (2022). Generation time of the alpha and delta SARS-CoV-2 variants: an epidemiological analysis. The Lancet. Infectious Diseases, 3099(22), 15–20.
- Park, S. W., Sun, K., Abbott, S., Sender, R., Bar-On, Y. M., Weitz, J. S., ... Dushoff, J. (2023). Inferring the differences in incubation-period and generation-interval distributions of the Delta and Omicron variants of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 120(22), e2221887120.
- 8. Roll, U., Yaari, R., Katriel, G., Barnea, O., Stone, L., Mendelson, E., ... Huppert, A. (2011). Onset of a pandemic: characterizing the initial phase of the swine flu (H1N1) epidemic in Israel. BMC Infectious Diseases, 11, 92. Japan, 2018. PLoS Currents, 10.

References (2)

- Akhmetzhanov, A. R., Lee, H., Jung, S., Kinoshita, R., Shimizu, K., Yoshii, K., & Nishiura, H. (2018). Real Time Forecasting of Measles Using Generation-dependent Mathematical Model in Japan, 2018. PLoS Currents, 10.
- Ito, K., Piantham, C., & Nishiura, H. (2022). Estimating relative generation times and reproduction numbers of Omicron BA.1 and BA.2 with respect to Delta variant in Denmark. Mathematical Biosciences and Engineering : MBE, 19(9), 9005–9017.
- Suzuki, R., Yamasoba, D., Kimura, I., Wang, L., Kishimoto, M., Ito, J., ... Sato, K. (2022). Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature, 603(7902), 700–705.
- 12. Ito, K., Zeller, M. A., & Piantham, C. (2024). RelRe. https://github.com/KimihitoIto/RelRe
- 13. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6),

 Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.